Search results for " base excision repair"
showing 2 items of 2 documents
Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair
2015
Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed …
The Friedreich's Ataxia protein frataxin modulates DNA base excision repair in prokaryotes and mammals
2010
DNA-repair mechanisms enable cells to maintain their genetic information by protecting it from mutations that may cause malignant growth. Recent evidence suggests that specific DNA-repair enzymes contain ISCs (iron–sulfur clusters). The nuclearencoded protein frataxin is essential for the mitochondrial biosynthesis of ISCs. Frataxin deficiency causes a neurodegenerative disorder named Friedreich's ataxia in humans. Various types of cancer occurring at young age are associated with this disease, and hence with frataxin deficiency. Mice carrying a hepatocyte-specific disruption of the frataxin gene develop multiple liver tumours for unresolved reasons. In the present study, we show that frata…